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Abstract
A molecular theory of the smectic A–smectic C transition in a system of
biaxial molecules is developed in the mean-field approximation. The influence
of molecular biaxiality on the transition is considered in detail and it is
demonstrated how the biaxial order parameters are induced by the tilt. It is
shown that the ordering of biaxial molecules of low symmetry in the smectic C
phase is generally described by ten independent orientational order parameters,
and there exist three different tilt angles which specify the tilt of three ordering
tensors. The order parameters are calculated numerically as functions of
temperature for two models of biaxial molecules: molecules with two principal
axes and molecules with a pair of off-center transverse dipoles. A substantial
difference between the three tilt angles is found, which makes impossible a
strict definition of a unique director in the smectic C phase. It is also shown
that biaxial interactions may lead to an anomalously weak layer contraction in
the smectic C phase. Finally, it is demonstrated that the smectic A–smectic C
phase transition may be directly driven by biaxial intermolecular interactions.
In this case, the tilt of long molecular axes is not a primary order parameter,
and its temperature dependence is very different from convention.

PACS numbers: 64.70.M-, 77.80.Bh, 42.70.Df

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Smectic liquid crystals are characterized by both orientational and partial translational order,
and exhibit many different phases (see e.g. [1]). The simplest orthogonal smectic phase is the
smectic A (SmA) phase where the preferred orientation of the molecular long axes, specified
by the director n, is perpendicular to the fluid-like smectic layers. The corresponding tilted
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phase is the smectic C (SmC) phase where the director is inclined by an angle � with
respect to the layer normal. Tilted smectic phases attract significant attention because of the
application of ferro- and antiferroelectric smectics C* in the new generation of fast electro-
optic displays, and because of the rich variety of different phases with unusual 3D structure
[2]. Tilting transitions, similar to the SmA–SmC one, are also observed in other soft-matter
systems including smectic elastomers [3, 4], lyotropic lamellar phases and Langmuir–Blodgett
films [5].

In spite of its apparent simplicity, the nature of the tilt in the SmC phase has been the
issue of debate during the past two decades. The simplest picture of the transition corresponds
to the collective tilt of nearly parallel molecules with respect to the layer normal. Such a
simple tilt, however, can be considered only in the limit of perfect orientational order. More
than two decades ago this oversimplified picture was criticized by Goossens [6, 7] who noted
that in this case there is no entropy change at the SmA–SmC transition and thus the transition
resembles a structural change. At the same time, the simple collective tilt of molecules can be
considered as a limiting case of a more realistic SmA–SmC transition which may occur in the
system of uniaxial molecules with partial orientational disorder.

It has been shown by several authors that there exist a number of common intermolecular
interactions which promote tilt in a smectic phase, including the induction interaction between
the molecular dipole and the polarizability of a neighboring molecule [8] and the electrostatic
interaction between longitudinal molecular quadrupoles [9]. In the case of partial disorder
the transition occurs at a particular temperature Tc [10]. Recently a detailed study of the
SmA–SmC phase transition in a system of uniaxial molecules has been undertaken by the
present authors using a complete set of orientational order parameters [11]. It has been shown
that the ‘uniaxial model’ can be used to describe smectics C with both low and high tilt, and
even to reproduce a constant or very weakly temperature dependent layer spacing in the SmC
phase [11, 12].

On the other hand, real mesogenic molecules are essentially biaxial, and the biaxiality
is expected to play a significant role in the SmC phase. Recently some of the biaxial order
parameters of the SmC phase have been measured experimentally for a number of smectic
materials [13–15], and it has been found that the biaxial parameters may reach the values of
0.2–0.3. Thus there exists a significant ordering of short molecular axes in the SmC phase, and
therefore the molecular biaxiality should be taken into account in the corresponding molecular
theory. Moreover, it has long been known that at least in principle the SmA–SmC phase
transition may be caused by biaxial molecular interactions. In fact, the first molecular model
for the SmC phase proposed by Wulf [16] was based on a model interaction potential between
biaxial molecules of ‘zig-zag’ shape. Later Goossens defined a biaxial order parameter which
is linearly coupled to the tilt and showed using a particular model, that the tilt may be caused
by the biaxial ordering . It has also been shown that the SmC phase may be stabilized by
steric interactions between oblique cylinders [17] and between flexible zig-zag molecules in
the two-dimensional system [18].

The existing molecular theory of the biaxial SmC phase is incomplete as it is based on
few particular models and does not employ the complete set of orientational order parameters.
The known models enable one to determine the SmA–SmC transition temperature, but the
biaxial order parameters have not been calculated before.

In this paper, we show that the number of orientational order parameters of the SmC
phase depends on the molecular symmetry. We derive the explicit expressions for six order
parameters in the case of biaxial molecules of the D2h symmetry (simplest biaxial molecules)
and ten order parameters for the molecules having the more realistic C2h symmetry. Within
two particular model biaxial interactions, coupling of two molecular principal axes and dipolar
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interaction, we calculate numerically all biaxial order parameters and study in detail the effect
of biaxiality on the SmA–SmC transition.

The paper is arranged as follows. In section 2 we present the analysis of all order
parameters allowed by the symmetry of the molecules. Section 3 describes the effects of
weak biaxiality on the tilting transition in the case when molecular biaxiality is determined
by the presence of the second principal molecular axis inclined with respect to the main one.
Next, in section 4 we study this also in the system of molecules with uniaxial cores and a pair
of transverse dipoles and pay special attention to the pronounced reduction of smectic layer
contraction due to biaxiality. In section 5 the so-called primary-biaxial SmA–SmC transition
promoted by the ordering of short molecular axes is investigated. Finally, the summary and
general conclusions are presented in section 6.

2. Order parameters of the biaxial smectic C phase

2.1. Smectic C phase composed of uniaxial molecules

It is well known that orientation of a uniaxial molecule in a nonpolar phase can be sufficiently
characterized by the symmetric second rank tensor QM

ij = aiaj −(1/3)δij with a being the unit
vector of molecular axis. The corresponding tensor order parameter Qij = 〈aiaj − (1/3)δij 〉
is the ensemble average of the microscopic tensor QM . In the biaxial SmC phase, the tensor
order parameter can be expressed in the following general form:

Qij = S
(
ninj − 1

3δij

)
+ 1

2P(mimj − hihj ), (1)

where S is the nematic order parameter and P is the biaxial order parameter which characterizes
the biaxial ordering of long molecular axes. Here the mutually orthogonal unit vectors n, m
and h are the primary axes of the tensor order parameter Q. The unit vector n is called the
director, and in the SmC phase it is tilted from the smectic layer normal by the tilt angle �Q.
The unit vector h is parallel to the C2 axis of the SmC phase which is normal to the tilt plane,
and the third primary axis m lies within the tilt plane.

In equation (1) the tensor order parameter is expressed in the diagonal frame. On the
other hand, the tensor Q can also be expressed in the non-diagonal frame based on the unit
vectors k, h and t, where k is the smectic layer normal and t⊥k specifies the direction of the
tilt:

Qij = Sk

(
kikj − 1

3δij

)
+ 1

2Pk(ti tj − hihj ) + 1
2VQ(ki tj + tikj ). (2)

Introducing the polar angle γ and azimuthal angle ϕ of the long molecular axis so that

a = k cos γ + t sin γ cos ϕ + h sin γ sin ϕ, (3)

we can present the uniaxial order parameter as Sk = 〈P2(cos γ )〉 and see that it describes the
nematic ordering with respect to the layer normal k. Similarly, the biaxial order parameter
Pk = 〈sin2 γ cos 2ϕ〉 describes the biaxial ordering of long molecular axes in the layer plane,
and VQ = 〈sin 2γ cos ϕ〉 is the tilt order parameter, which is nonzero only in a tilted smectic
phase.

The advantage of using the order parameters Sk, Pk and VQ instead of the traditional
parameters S, P and the tilt angle �Q is determined by the fact that the parameters Sk, Pk, VQ

are all explicitly expressed as statistical averages of the corresponding microscopic quantities.
In particular, in contrast to the tilt angle �Q, which can be determined only after evaluation and
diagonalization of the whole tensor Q, the tilt order parameter VQ can be evaluated directly
using some experimental techniques, computer simulations or an analytical theory without
knowing the orientation of the director.
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Diagonalization of the tensor (2) enables one to establish the exact relationships between
the order parameters S, P,�Q and Sk, Pk, VQ [12]:

tan 2�Q = VQ

Sk − 0.5Pk

, (4)

S = 1

4
Sk +

3

8
Pk +

3VQ

4 sin 2�Q
, (5)

P = 1

2
Sk +

3

4
Pk − VQ

2 sin 2�Q
. (6)

Finally, one notes that VQ is the scalar tilt order parameter. Both the absolute value and
the direction of the tilt are specified by the pseudovector tilt order parameter

WQ = (k × Q · k) = 1
2VQ(k × t), (7)

which is normal to the tilt plane.

2.2. Smectic C phase composed of simple biaxial molecules

Consider now molecules with lower symmetry, which orientation is described by three
mutually orthogonal molecular axes a, b and c. Introducing the third Euler angle of the
molecule ψ , as that between the axis b and the direction of the tilt of the axis a, one can write

b = −k sin γ cos ψ + t(cos γ cos ϕ cos ψ − sin ϕ sin ψ)

+ h(cos γ sin ϕ cos ψ + cos ϕ sin ψ), (8)

and

c = k sin γ sin ψ − t(cos γ cos ϕ sin ψ + sin ϕ cos ψ)

+ h(cos ϕ cos ψ − cos γ sin ϕ sin ψ). (9)

The simplest biaxial molecule is characterized by the D2h symmetry, i.e., possesses three
mutually orthogonal mirror planes and three C2 symmetry axes (see figure 1(a)), and is,
therefore, invariant under the transformations a → −a, b → −b and c → −c.

It is well known since the work of Straley [19] that such a biaxial molecule is characterized
by two orthogonal second rank molecular tensors: the uniaxial tensor aαaβ − (1/3)δαβ and
the symmetric biaxial tensor bαbβ − cαcβ . As a result, the SmC phase composed of biaxial
molecules of the D2h symmetry is characterized by two independent tensor order parameters
Qij = 〈aiaj − (1/3)δij 〉 and Bij = 〈bibj − cicj 〉. The uniaxial tensor order parameter Q
is given by equations (1) and (2) of the previous subsection. In its own diagonal frame, the
biaxial tensor order parameter B can be expressed in the form similar to equation (1):

Bij = D
(
n1in1j − 1

3δij

)
+ C(m1im1j − hihj ), (10)

where the order parameter D = 3/2〈(b · n1)
2 − (c · n1)

2〉 describes the tendency of short
molecular axes to order differently along the director n1 and the biaxial order parameter
C = 1/2〈(b · m1)

2 − (c · m1)
2 − (b · h)2 + (c · h)2〉 describes the nonpolar ordering of short

molecular axes.
In equation (10) the ‘director’ n1 is defined as the primary axis of the macroscopic tensor

B while the unit vector m1 is orthogonal to it. One notes that n1 has generally a different
orientation in the tilt plane compared with the ‘uniaxial’ director n defined as the primary axis
of the tensor Q. Thus, in the SmC phase composed of biaxial molecules of D2h symmetry it
is possible to define two different tilt angles �Q and �B . Here �Q is the angle between the
‘uniaxial’ a-related director n and the layer normal k, i.e. cos �Q = (n · k). At the same time,
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�B is the angle between the ‘second’ director n1 and k, i.e. cos �B = (n1 · k). The difference
between the two tilt angles may be quite significant in some systems as shown later.

From the general symmetry point of view, the existence of two different ‘directors’ is
related to the fact that in the SmC phase the orientation of the director in the tilt plane is not
specified by any symmetry. It has been shown experimentally, for example, that the optical
tilt angle noticeably depends on the wavelength of light [20]. Indeed, for any macroscopic
second rank tensor in the smectic phase, the orientation of only one primary axis is fixed by the
symmetry of the phase because one of the primary axis must be parallel to the C2 symmetry
axis of the phase which is normal to the tilt plane. The two remaining primary axes lie in the
tilt plane, and their orientation may be different for different macroscopic tensors.

The biaxial tensor order parameter B can also be expressed in the nondiagonal k, t, h-
frame similar to equation (2):

Bij = Dk

(
kikj − 1

3δij

)
+ Ck(ti tj − hihj ) + 1

2VB(kitj + tikj ), (11)

where the explicit expressions for the order parameters are

Dk = 3
2 〈sin2 γ cos 2ψ〉, (12)

Ck = 〈cos 2ϕ cos 2ψ(1 + cos2 γ )/2 − cos γ sin 2ϕ sin 2ψ〉, (13)

VB = 〈2 sin γ sin ϕ sin 2ψ − sin 2γ cos ϕ cos 2ψ〉, (14)

and where VB is the biaxial scalar tilt order parameter. The corresponding pseudovector tilt
order parameter is expressed similar to equation (7):

WB = (k × B · k) = 1
2VB(k × t). (15)

Similar to the previous case, the order parameters D,C,�B can be expressed in terms of the
order parameters Dk,Ck and VB by diagonalizing the tensor B:

tan 2�B = VB

Dk − Ck

, (16)

D = 1

4
Dk +

3

4
Ck +

3VB

4 sin 2�B

, (17)

C = 1

4
Dk +

3

4
Ck − VB

4 sin 2�B

. (18)

It should be noted that the definition of the orientational biaxial order parameters given
by equations (2) and (11) is the most natural and convenient one for a SmC phase composed
of biaxial molecules. Indeed, the order parameters Sk, Pk, VQ,Dk, Ck and VB are explicitly
expressed as statistical averages anchored to the smectic layer normal k which is usually well
known in experiments. Thus these order parameters can, in principle, be measured using a
number of experimental techniques including the infrared spectroscopy [13, 14, 15, 21]. In
contrast, the order parameters S, P,D and C are defined in the director frame, and can be
evaluated only if the director orientation is known. Moreover, the biaxial order parameters D
and C are defined with respect to the ‘biaxial’ director n1 which is generally different from
the director n. Simultaneous experimental determination of the two different directors in the
SmC phase is hardly possible at present because most macroscopic tensors, like the dielectric
tensor, contain both uniaxial and the biaxial parts.
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Figure 1. Simple models for biaxial molecules of different symmetry (D2h(a) and C2h (b), (c))
and the corresponding molecular long and short axes.

2.3. Smectic C phase composed of biaxial molecules of low symmetry

One notes that the symmetry of real mesogenic molecules is lower than the D2h group.
Neglecting the weak effects of molecular chirality, we may assume that a molecule possesses
a mirror plane, which is its only natural element of symmetry. In the nonchiral SmC phase there
is no polar ordering of molecular axes, and thus the molecular orientations, which correspond
to opposite directions of both long and short molecular axes, must have the same probability.
Taking into consideration that a nonchiral molecule may be polar only in the mirror plane,
the averaging over polar orientations results in a new effective symmetry element—the C2

symmetry axis perpendicular to the molecular plane. As a result the molecule effectively
acquires the C2h symmetry.

Two examples of such molecules are pictured in figures 1(b) and (c). The one shown in
figure 1(b) is quite often referred as being effectively ‘zig-zag’ shaped. The same symmetry
corresponds also to a rod-like molecule with a transverse dipole. After accounting for no polar
ordering of long axes, i.e., averaging over two equivalent opposite orientations of the axis a,
the effective molecule acquires two antiparallel transverse dipoles (see figure 1(c)).

The molecules of the C2h symmetry are characterized by the additional molecular tensor
aibj which is invariant under all symmetry transformations of the molecule if the short axis
b is parallel to the molecular plane. Naturally, the tensor can be expressed as a sum of the
symmetric and antisymmetric parts: aibj = (1/2)(aibj + biaj ) + (1/2)(aibj − biaj ).

The average symmetric tensor �ij = 〈aibj + biaj 〉 can be written in its own diagonal
frame n2, m2, h,

�ij = G(n2in2j − δij /3) + H(m2im2j − hihj ), (19)

as well as in the nondiagonal k-frame:

�ij = Gk

(
kikj − δij /3

)
+ Hk(ti tj − hihj ) + 1

2V�(kitj + tikj ), (20)

where the scalar order parameters entering the latter form are given by the explicit expressions:

Gk = − 3
2 〈sin 2γ cos ψ〉 , (21)

Hk = 1
2 〈sin 2γ cos 2ϕ cos ψ − 2 sin γ sin 2ϕ sin ψ〉 , (22)

V� = 2〈cos 2γ cos ϕ cos ψ − cos γ sin ϕ sin ψ〉, (23)

and where V� is the new biaxial scalar tilt order parameter. Similarly to equations (16)–(18)
for the tensor B, one can use these parameters in the k-frame to calculate the parameters G
and H in the diagonal frame of the tensor � as well as the tilt angle between those two frames
�� .
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The corresponding pseudovector tilt order parameter is expressed as

W� = (k × B · k) = 1
2V�(k × t). (24)

The average antisymmetric tensor 〈aibj − biaj 〉 can be expressed in terms of a
pseudovector Ω, i.e., 〈aibj − biaj 〉 = εijk
k where εijk is the antisymmetric Levi-Civita
tensor, and where the pseudovector order parameter Ω equals

Ω = 
(k × t), (25)

with the scalar order parameter


 = 〈cos ϕ cos ψ − cos γ sin ϕ sin ψ〉. (26)

Thus the SmC phase composed of nonchiral biaxial molecules of low symmetry is
characterized by ten independent order parameters. All of them are calculated numerically
for particular models in the following. One notes , however, that not all of these parameters
are important for the SmA–SmC transition. In particular, the order parameters Sk,Dk and Gk

(or S,D,G) are nonzero already in the nematic phase and do not change much across the
SmA–SmC transition. Here Sk is the nematic order parameter and the parameters Dk and Gk

describe different types of uniaxial ordering of short molecular axes along the smectic layer
normal. It has been shown before [12] that the type of the SmA–SmC transition strongly
depends on the value of S at the transition point. In contrast, the parameters Dk and Gk are
generally small and play only minor roles.

The biaxial order parameters Pk, Ck and Hk specify the biaxiality of the smectic phase.
The parameters are nonzero in the rare nontilted biaxial SmA phase, where one of them is a
primary order parameter which drives the transition from the uniaxial to the biaxial phase. In
contrast, in the SmC phase Pk, Ck and Hk are the secondary order parameters induced by the
tilt. The parameter Pk specifies the biaxial ordering of long molecular axes, and is generally
rather small. One notes that the corresponding order parameter P, defined in the director
frame, is close to zero both theoretically [12] and experimentally [15]. The parameters Ck and
Hk specify the biaxial ordering of short molecular axes and can reach relatively large values
in the SmC phase. These parameters are important for the correct description of the tilting
transition.

The order parameters VQ, VB and V� are the tilt order parameters which are nonzero
only in a tilted smectic phase. One of them is the primary order parameter of the SmA–SmC
phase transition depending on the corresponding molecular mechanism. In the previous papers
[11, 12] we have considered the model of the tilting transition driven by uniaxial intermolecular
interactions, i.e. by the tendency of long molecular axes to tilt. In this case, VQ is the primary
tilt order parameter and, as we demonstrate below, the other two parameters VB and V� play
minor roles. In section 5 we consider a different mechanism of the SmA–SmC transition
determined by biaxial interactions between molecules of C2h symmetry or lower. The primary
tilt order parameter of such a transition is V� . One notes, however, that in realistic cases the
order parameter VB , which specifies the tendency of short molecular axes to tilt, is never a
primary order parameter and is much smaller than VQ or V� .

Finally, the pseudovector order parameter Ω has exactly the same symmetry as the tilt
order parameters WQ, WB and W� , and is also parallel to the C2 axes of the SmC layer.
Thus Ω‖Wa‖WB‖W� . It is important to note that the order parameter Ω is not the tilt order
parameter because it is nonzero in the hypothetical biaxial nontilted SmA phase schematically
presented in figure 2. This biaxial phase, however, is unstable with respect to the tilt because
of the linear coupling between Ω and the tilt order parameters Wa, WB and W� which have
the same symmetry. In other words, some tilt is always induced by any nonzero Ω. As shown
in [28], the order parameter Ω is directly related to the ferroelectricity of the chiral SmC*
phase.
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Figure 2. Unconventional biaxial SmA phase with nonzero biaxial order parameter 
.

3. Influence of molecular biaxiality on the smectic A–smectic C phase transition

Statistical mean-field theory of the SmA–SmC phase transition in smectics consisting of
uniaxial molecules has been developed recently by the authors [11, 12]. Below we generalize
the approach taking into account the molecular biaxiality and the ordering of short molecular
axes. In the approximation of perfect smectic ordering, the free energy of a smectic phase can
be written in the form [12]:

F/V = 1

2
ρ2

∫
f1(a1, b1)U(1, 2)f1(a2, b2) d2R da1 db1 da2 db2

+ ρkBT

∫
f1(a1, b1) ln f1(a1, b1) da1 db1, (27)

where ρ is the number density of molecules per unit area of the smectic layer, R is the
intermolecular vector in the smectic plane, U(1, 2) is effective pair interaction potential and
f1(a, b) is the orientational distribution function which describes the statistics of the molecular
unit vectors a and b.

Minimizing the free energy (27) one obtains

f1(a, b) = 1

Z
exp

[
−UMF (a, b)

kBT

]
, (28)

where Z is the normalization constant

Z =
∫

exp

[
−UMF (a, b)

kBT

]
da db, (29)

and UMF is the mean-field potential expressed as

UMF (a, b) = ρ

∫
f1(a2, b2)U(1, 2) d2R da2 db2. (30)

The total effective interaction potential of a pair of biaxial molecules can be presented as
a sum of an effective interaction potential between uniaxial molecular cores, which depends
only on the orientation of the long axis a1, a2, and the biaxial interaction potential which
depends also on the orientation of short molecular axes b1, b2:

U(1, 2) = U aa(a1, R, a2) + U ab(a1, b1, R, a2, b2). (31)

In recent papers we have developed the molecular theory of the SmA–SmC phase transition
determined by uniaxial intermolecular interactions [11, 12]. As discussed in detail in [12],
the essential form of the corresponding uniaxial interaction potential U aa(a1, R, a2) is given
by the four terms containing the lowest powers of a1 and a2:

U aa(a1, R, a2) ≈ v1(R)[(a1 · u)2 + (a2 · u)2] + v2(R)(a1 · a2)
2

+ v3(R)(a1 · a2)(a1 · u)(a2 · u) + v4(R)(a1 · u)2(a2 · u)2, (32)
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a
l

b

α

Figure 3. A model of a biaxial molecule with two pronounced ‘principal’ molecular axes a and l.

where the unit vector u = R/R. This form of the potential corresponds to the first few
terms of a systematic expansion of an arbitrary uniaxial potential in spherical harmonics.
The coupling constants v1−4 can be calculated numerically for particular model interactions
including, for example, the Gay–Berne interaction of ellipsoidal cores, electrostatic interaction
of longitudinal dipoles and induced dipole–dipole interaction [12].

Substituting equation (32) into equation (30) one obtains the following expression for the
uniaxial mean-field potential [11, 12]:

U aa
MF(a) = w1P2(cos γ ) + w2SkP2(cos γ ) + w3Pk sin2 γ cos 2ϕ + w4VQ sin 2γ cos ϕ, (33)

which depends on the order parameters Sk, Pk and VQ. The transition into the SmC phase
occurs when the nematic order parameter exceeds the critical value

SAC = 3w1

4w4 − 3w2
, (34)

which means that the growth of the nematic order is the driving force of the tilting transition
in this model based on the uniaxial potential.

The general structure of the biaxial part of the interaction potential is much more
complicated because the biaxial potential depends on five different vectors. Even the low
order terms in the expansion in spherical harmonics contain far too many coefficients. In
this paper we show that the main features of the tilting transition, determined by biaxial
interactions, can be described using simple but physically meaningful models which lead to
reasonable expressions for the biaxial interaction potential.

The first model of the biaxial molecule, which will be used here, is obtained if one takes
into account that biaxial molecules of the C2h symmetry or lower often have at least two
‘principal’ axes which make some angle different from 90◦. For example, in the case of ‘zig-
zag’ molecules (see figure 3) the long molecular axes a may be associated with the overall
molecular shape, while the main polarizability axis l, which is approximately parallel to the
polarizable rigid core, is tilted from a:

l = a cos α + b sin α. (35)

For biaxial molecules with two primary axes, one can introduce the molecular tensor
li lj − δij /3. The average of this tensor in the SmA and SmC phases can be written exactly in
the same form as equations (2), (11) and (20):

Lij = L1(kikj − δij /3) + L2(ti tj − hihj ) + 1
2Vl(ki tj + tikj ). (36)
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Taking into account (35), the tensor L can be presented as a linear combination of the tensors
Q, B and �:

L = QP2(cos α) + 1
2 B sin2 α + 1

2� sin 2α. (37)

Accordingly, the order parameters L1, L2 and VL can be expressed in terms of the independent
order parameters discussed in section 2 :

L1 = P2(cos α)Sk + 1
2 sin2 αDk + 1

2 sin 2αGk, (38)

L2 = 1
2P2(cos α)Pk + 1

2 sin2 αCk + 1
2 sin 2αHk, (39)

VL = P2(cos α)VQ + 1
2 sin2 αVB + 1

2 sin 2αV�. (40)

Now let us assume that the biaxial part of the interaction between such molecules can be
expressed as a coupling between the molecular axes l1 and l2. If these axes are parallel to the
molecular rigid cores, the corresponding coupling between l1 and l2 describes a dispersion
interaction between the cores.

The general form of the biaxial potential which contains lowest order terms in l1 and l2
can be written similarly to (32):

Uab(l1, R, l2) = v
(l)
1 (R)

[
(l1 · u)2 + (l2 · u)2

]
+ v

(l)
2 (R)(l1 · l2)2

+ v
(l)
3 (R)(l1 · l2)(l1 · u)(l2 · u) + v

(l)
4 (R)(l1 · u)2(l2 · u)2, (41)

where all possible terms quadratic in l1,2 have been taken into account.
The mathematical similarity with the uniaxial interaction potential enables one to obtain

directly the corresponding expression for the biaxial contribution to the mean field potential

Uab
MF(l) = w

(l)
1 P2(cos γl) + w

(l)
2 L1P2(cos γl)

+ w
(l)
3 2L2 sin2 γl cos 2ϕl + w

(l)
4 VL sin 2γl cos ϕl, (42)

where the polar angle γl and the azimuthal angle ϕl specify vector l, and the parameters w(l)
α

are the following linear combinations of the coefficients v̄(l)
α = ρ

∫
dR v(l)

α (R):

w
(l)
1 = −v̄

(l)
1

/
3 − (

v̄
(l)
3 + v̄

(l)
4

)/
9, (43)

w
(l)
2 = 2v̄

(l)
2

/
3 +

(
v̄

(l)
3 + v̄

(l)
4

)/
9, (44)

w
(l)
3 = v̄

(l)
2

/
2 + v̄

(l)
3

/
4 + v̄

(l)
4

/
8, (45)

w
(l)
4 = v̄

(l)
2

/
2 + v̄

(l)
3

/
8. (46)

Now the total mean-field potential of the system is the sum of the uniaxial contribution
given by (33) and the biaxial contribution (42). Substituting (33) and (42) into equation (27),
one obtains the following expression for the free energy of the SmC phase composed of biaxial
molecules.

F/V = 1
2ρ

{
w2S

2
k + w3P

2
k + w4V

2
Q + w

(l)
2 L2

1 + 4w
(l)
3 L2

2 + w
(l)
4 V 2

L

} − ρkBT ln Z, (47)

where Z is given by equation (29).
The orientational order parameters of the SmC phase can now be calculated numerically

by minimization of the free energy.
It is reasonable to assume that the biaxial intermolecular interaction energy is significantly

weaker than the uniaxial one. Then the tilting transition remains determined by the uniaxial
interactions, while the biaxial interactions are responsible for the biaxiality of the SmC phase,
and may lead to a shift of the transition temperature and affect other parameters. To simplify
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Figure 4. SmA–SmC phase transition modeled using the parameters w1 = −0.05, w2 =
−1, w3 = −0.85, w4 = −0.8, v̄

(l)
2 = −0.05, v̄

(l)
3 = −0.05 and α = 30o: (a) components of

the Q tensor in its main axes and its tilt angle; (b) tilt angles of all four ordering tensors considered
in this paper; (c) and (d) components of the biaxial tensor order parameters � and B respectively.

the analysis we present the results calculated for v
(l)
1 = v

(l)
4 = 0 and small nonzero v

(l)
2 and

v
(l)
3 . Typical temperature variation of all order parameters of the SmC phase with weak biaxial

interactions is shown in figure 4.
One can readily see that the order parameters Ck,Dk and VB , which specify the tensor

order parameter B, are much smaller than the parameters Gk,Hk and V� which determine
the orientation of the tensor �. Thus, in this model, the purely biaxial tensor B existing for
all biaxial molecules is much less important than the tensor order parameter �, which can be
introduced only for biaxial molecules of sufficiently low symmetry. Remarkably, the tilt angle
�Q, which is the primary one here, is almost twice smaller than �B and �� of the induced
biaxial tensor order parameters. One also notes that the tilt-induced biaxial order parameters
Ck and Dk vary approximately linearly with decreasing temperature in the SmC phase in-line
with the prediction of the phenomenological theory [22].

4. Dipolar model of the biaxial smectic C phase

Molecular biaxiality can be determined by different factors including shape, polarizability and
charge distribution. Let us now consider a simple model where the biaxiality is determined by
transverse dipoles. The corresponding molecule is schematically presented in figure 5 and is
composed of a uniaxial core and a pair of off-center dipoles with large transverse components
lying in orthogonal planes. One notes that this structure is chiral, and the model captures
some key features of novel chiral dopants synthesized and investigated recently by Lemieux
et al [23–26]. Introducing the orthogonal transverse unit vectors e± one can express the two
molecular dipoles as

µ± = µ(e± sin δ ± a cos δ). (48)
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Figure 5. Model of a biaxial molecular with two transverse dipoles, and the molecular axes.

The total dipole moment of the molecule in figure 5 is purely transverse µ⊥ = (µ+ + µ−) and
is in the direction of the unit vector c = (e+ + e−)/

√
2. Another short molecular axis is now

defined as b = (e+ − e−)/
√

2.
An interaction potential for a pair of such molecules is expressed as a sum of effective

interaction potentials between rigid uniaxial cores and the sum of all electrostatic dipole–dipole
interactions:

U(1, 2) = U aa(a1, R, a2) + Uµµ(1, 2), (49)

where Uµ also depends on the orientation of short molecular axes:

Uµµ(1, 2) = µ+
1 · D↑↑ · µ+

2 + µ−
1 · D↓↓ · µ−

2 + µ+
1 · D↑↓ · µ−

2 + µ−
1 · D↓↑ · µ+

2, (50)

and where all the tensors D involved can be expressed in the following mathematical form

Dij (a1, a2, R) = 1

r5
(r2δij − 3rirj ). (51)

Here the distance between the interacting dipoles r is a function of molecular orientation and
the intermolecular distance: r = r(a1, a2, R). In the expression for the tensor D↑↑ the distance
r = R+νa2−νa1 is the distance between upper dipoles, while in the expression for D↓↓ it is the
distance between lower dipoles, and thus is expressed as r = R − νa2 + νa1. In the expression
for the tensors D↑↓ and D↓↑ the distance between the dipoles equals r = R + νa2 + νa1 and
r = R − νa2 − νa1, respectively.

Similarly to the previous model, we again assume that the tilting of the director in the SmC
phase is determined by the uniaxial core–core interaction potential U aa given by equation (32).
The ordering of short molecular axes is then determined by relatively weak biaxial interaction
(50). One notes, however, that the actual form of this interaction potential is too complicated
to be used directly in the statistical theory. In particular, substituting the actual potential (50)
into equation (30) one cannot obtain the mean-field potential as an explicit function of the
orientational order parameters. Substantial simplification can be achieved if the actual dipole–
dipole potential is expanded in spherical invariants neglecting the higher order terms. The
statistical averages of higher order terms are expressed in terms of higher order orientational
order parameters, which are normally not very important from the qualitative point of view
[27] and are neglected in this paper.

As shown in [28], the actual interaction potential between the pairs of off-center dipoles
can be approximated by the relatively simple expression:

U
µµ

MF = w5[cot δVQ(a · k)(b · t) + cot δ sin 2γ cos ϕ(V� + 
)/2 + (a · k)(b · t)(V� + 
)/
√

2],

(52)

containing the biaxial order parameters in the combination (V� + 
)/2 = 〈(a · k)(b · t)〉.
12
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Figure 6. SmA–SmC phase transition obtained using the parameters w1 = −0.05, w2 = −1,

w3 = −0.9, w4 = −0.8, w5 = −0.1 and δ = 60o: (a) components of the Q tensor in its main axes
and its tilt angle; (b) tilt angles of the Q, B and � tensor order parameters; (c) and (d) components
of the biaxial tensor order parameters � and B respectively.

The total mean-field potential (30) is a sum of the uniaxial contribution (33) and the
dipolar term (52). Then the free energy of the smectic phases (27) can be expressed as

F/V = 1

2
ρ
{
w2S

2
k + w3P

2
k + w4V

2
Q + w5[cot δVQ(V� + 
) + 2−3/2(V� + 
)2]

}
− ρkBT ln Z. (53)

Now the orientational order parameters can be evaluated by numerical minimization of the
free energy at a given temperature, and all the order parameters can be calculated according to
their definitions as averages given in section 2 and the general expression for the orientational
distribution function (28). Typical results of these calculations are presented in figure 6.

As seen from figure 6(b), the tilt angles, �Q,�B and �� , are here also substantially
different. In contrast to the case of biaxial molecules with two principal axes (see figure 4(b)),
here the tilting of the main axis a is larger than those of the biaxial tensors Γ and B. Thus
it is generally impossible to define a unique director in the SmC phase composed of biaxial
molecules. One also notes that the order parameters specifying the tensor order parameter Γ,
reach the values of the order of 0.1–0.2 at lower temperatures. At the same time, the typical
values of the biaxial order parameters Ck,Dk and VB are much smaller, i.e. the conventional
biaxial tensor B is here also less significant.

4.1. Biaxial ordering and the de Vries type behavior

It is interesting to note that the biaxial interactions have a significant effect on the temperature
variation of the smectic layer thickness. In particular, the interactions between transverse
dipoles, considered above, may considerably suppresses the contraction of smectic layers in
the SmC phase as shown in figure 7. This is an additional mechanism which leads to an
anomalously weak layer contraction, and it is different from that considered in [11, 12].
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Figure 7. Variation of the relative smectic layer thickness 〈cos γ 〉 near SmA–SmC phase transition
obtained using the parameters w1 = −0.05, w2 = −1, w3 = −0.9, w4 = −0.8, with dipolar
biaxial interaction w5 = −0.1, δ = 60o (solid) and without it (dashed).

5. Smectic A–smectic C phase transition determined by biaxial interactions

So far we have considered the case when the tilt in the SmC* phase is determined by the
uniaxial interaction between molecular cores, i.e. by the effective uniaxial potential (32). On
the other hand, the tilting transition may also be determined by sufficiently strong biaxial
intermolecular interactions. From the thermodynamical point of view, this means that the free
energy of the SmA phase may first lose its stability not with respect to the tilt angle, but with
respect to the corresponding biaxial order parameter which then appears to be the primary
order parameter of the SmA–SmC transition. This corresponds to a different scenario of the
transition when the tilt is not a primary order parameter, but is induced by the biaxial ordering
due to a linear coupling between biaxial order parameters and the uniaxial tilt. Such coupling
is, for example, described by the term with (
 + V�)VQ in the free energy equation (52).

The difference between the two scenarios of the SmA–SmC transition can be clarified
using the simple Landau expansion of the free energy of the SmC phase in terms of a tilt angle
�Q and the biaxial order parameter V�:

F(�Q, V�) = A1(T )�2
Q + A2(T )V 2

� + ��QV� + · · · . (54)

Here the linear coupling term between the tilt angle �Q and the biaxial tilt order parameter
V� stems from the linear coupling between the pseudovector order parameters WQ and W�

which is allowed by symmetry (see also the potential (52) and the discussion at the end of
section 2).

If the uniaxial intermolecular interactions are responsible for the tilt, the coefficient
A1(T ) in the �2

Q term changes sign first with decreasing temperature, and thus the tilt is
a primary order parameter in this case. The biaxial order parameter V� is then induced
by the tilt in the SmC phase. However, if the biaxial interactions are sufficiently strong,
the coefficient A2(T ) in the V 2

� term may change sign first, and then the biaxial parameter
V� appears to be the primary order parameter while the tilt angle �Q appears to be the
secondary order parameter induced by the biaxial ordering. We have also studied the latter
scenario of the SmA–SmC phase transition in the framework of the present theory by using
the uniaxial potential (32) which does not stabilize the tilted phase. The coefficients wi

in the uniaxial potential have been calculated using the expansion of the standard Gay–
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Figure 8. SmA–SmC phase transition induced by the biaxial ordering. The angle δ = 60o,
and the uniaxial interaction constants are obtained from the Gay–Berne potential (see [12]),
w1 = −0.31, w2 = −1, w3 = −0.62, w4 = −0.68. Strong biaxial interaction is determined
by the coupling constant w5 = −0.5. (a) Components of the Q tensor order parameter in its
own primary axes and the corresponding tilt angle; (b) tilt angles of the Q, B and Γ tensor order
parameters; (c) and (d ): components of the biaxial tensor order parameters Γ and B respectively.

Berne interaction potential which is known to promote no tilt (see [12]). Strong biaxial
intermolecular interactions have been modeled by taking the large negative coupling constant
w5 = −0.5 which is of the same order as the coefficients in the uniaxial part of the
total interaction potential.

Temperature variations of the order parameters for this type of the SmA–SmC transition
are presented in figure 8. One can readily see that the temperature variation of the biaxial
tilt order parameter V� is typical of a classical primary order parameter, and is dramatically
different from the variation presented in figures 4 and 6. In this case, the biaxial tilt order
parameter V� is also much larger than in the previous two cases when it has been induced by
the tilt (see figures 4(c) and 6(c)). At the same time, the tilt angles are relatively small and,
again, all different. The tilt angle of long molecular axes �Q rapidly saturates with decreasing
temperature, which is completely different from the two previous cases.

6. Conclusions

In this paper we have developed mean-field molecular model for the SmA–SmC phase
transition in a liquid crystal material composed of biaxial molecules. The orientational order
of biaxial molecules in the SmC phase is described by three tensor order parameters Q, B and
�, which are discussed in detail in section 2. Here Q is the conventional uniaxial tensor order
parameter which is widely used in the theory of nematic liquid crystals. The tensor B is the
biaxial order parameter which specifies the nonpolar orientation of short molecular axes, and
has originally been introduced by Straley [19] in the theory of biaxial nematics. Finally, the
third tensor order parameter � can only be defined for biaxial molecules of the C2h symmetry
or lower. This ordering tensor has not been considered before neither in the theory of biaxial
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nematics nor in the theory of smectics C. The tensor � specifies the simultaneous ordering
of long and short molecular axes, and is expressed as the average of the novel molecular
tensor aibj which is invariant with respect to all symmetry operations of the molecular C2h

symmetry group. As shown in section 2, all ordering tensors of the SmC phase contain ten
independent scalar order parameters, which all have been calculated numerically as functions
of temperature for two particular models.

It is important to note that in the general case one cannot define the unique tilt angle (or the
unique director) in the SmC phase. This is because the three tensor order parameters, discussed
above, are characterized by different tilt angles �Q,�B and �� , respectively. The difference
between these tilt angles may be very large as illustrated by both models of biaxial molecules
used above. As a result, the ‘directors’ determined by various experimental techniques will
differ from each other. This conclusion can be supported by the following example.

Most often, the director of the SmC liquid crystal is determined experimentally as the
primary optical axis of the SmC material. In general, refractive indices of the SmC phase
are complicated functions of the molecular polarizability, but for our illustrative purposes it is
sufficient to take into account that the average dielectric tensor is approximately proportional
to the average molecular polarizability tensor 〈αij 〉. For molecules of the C2h symmetry,
the molecular polarizability tensor αij can be presented as a linear combination of the three
independent molecular tensors (aiaj − δij /3), (bibj − cicj ) and aibj :

αij = α1(aiaj − δij /3) + α2(bibj − cicj ) + α3aibj + α0δij (55)

where the coefficients α0, α1, α2 and α3 have the meanings of the average molecular
polarizability, polarizability anisotropy, biaxial part of the polarizability and the off-diagonal
part of the polarizability, respectively. Accordingly, the average polarizability tensor can
be expressed in terms of the three tensor order parameters of the SmC phase and the unit
tensor I:

〈α〉 = α1Q + α2B + α3� + α0I. (56)

As discussed above, the tensors Q, B and � are generally diagonal in different frames. Only
one principal axis, which is parallel to the C2 symmetry axis of the SmC phase, is the
same for all of them. Then the primary axis of the average polarizability tensor (56) will
also differ from the primary axes of the three tensor order parameters, and its particular
orientation will depend on the coefficients αk, k = 1, 2, 3. Thus one concludes that the
‘director’ determined by another experimental technique based on another macroscopic tensor
(characterized by different coefficients analogous to αk) will be different from the primary
optical axis. Moreover, the orientation of optical axis itself is known to be frequency dependent
[20] due to the frequency dispersion of the coefficients αk . The situation becomes even more
complicated if higher order tensors, like those describing the Raman scattering, are involved.

As a result, the values of the order parameters of the SmC phase calculated in the ‘director
frame’, will be different for different techniques. This problem can be avoided by using the
complete set of order parameters defined in the k-frame, as discussed in detail in section 2.
The frame based on the layer normal k is unique, and thus the corresponding order parameters
will also have unique values. Even the value of the conventional nematic order parameter S is
to a certain extent not unique in the SmC phase as it can be evaluated with respect to different
directors. In contrast, the order parameter Sk which specifies the ordering of long molecular
axes along the smectic layer normal k does not depend on the definition of the director, and
can be measured using different techniques.

Biaxial intermolecular interactions may also have a significant effect on the variation of
the layer spacing with temperature in the SmC phase. It has been shown before [11, 12]
that both conventional and anomalously weak layer contraction can be explained using only
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uniaxial intermolecular interaction potential. In the present paper it has been suggested that
relatively strong biaxial interaction may also be responsible for the low layer contraction.

We have also considered the role of biaxial interactions on the properties of SmA and
SmC phases. It has been demonstrated that strong biaxial interactions may induce the SmA–
SmC phase transition even when the uniaxial interactions promote no tilt. In this case, the
system loses its stability with respect to the corresponding biaxial tilt order parameter, which
appears then to be the primary order parameter of the phase transition, while the tilt of the long
molecular axes is induced by the biaxial ordering. Such a phase transition is characterized by
low values of the tilt angle, which saturates rapidly with decreasing temperature.

Finally, one notes that the biaxial pseudovector order parameter Ω, discussed in
section 2, is directly proportional to the spontaneous polarization of the chiral SmC* phase
[28]. According to [28], the spontaneous polarization can be expressed as Ps = ρµΩ, where
ρ is the molecular number density and µ is a pseudoscalar molecular parameter, which
vanishes if the molecules are nonchiral and which depends on the orientation of dipoles in
the molecular frame. Thus the temperature variation of the order parameter 
 corresponds
to that of the spontaneous polarization in the chiral SmC*. In particular, the temperature
dependences of 
 calculated in sections 4 and 5 using the model of dipolar biaxial molecules
directly represent that of the polarization. The detailed theory of ferroelectric ordering in the
SmC* phase is considered in [28] and [29].
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